Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 13, 2026
- 
            Sharing genomic databases is critical to the collaborative research in computational biology. A shared database is more informative than specific genome-wide association studies (GWAS) statistics as it enables do-it-yourself calculations. Genomic databases involve intellectual efforts from the curator and sensitive information of participants, thus in the course of data sharing, the curator (database owner) should be able to prevent unauthorized redistributions and protect genomic data privacy. As it becomes increasingly common for a single database be shared with multiple recipients, the shared genomic database should also be robust against collusion attack, where multiple malicious recipients combine their individual copies to forge a pirated one with the hope that none of them can be traced back. The strong correlation among genomic entries also make the shared database vulnerable to attacks that leverage the public correlation models. In this paper, we assess the robustness of shared genomic database under both collusion and correlation threats. To this end, we first develop a novel genomic database fingerprinting scheme, called Gen-Scope. It achieves both copyright protection (by enabling traceability) and privacy preservation (via local differential privacy) for the shared genomic databases. To defend against collusion attacks, we augment Gen-Scope with a powerful traitor tracing technique, i.e., the Tardos codes. Via experiments using a real-world genomic database, we show that Gen-Scope achieves strong fingerprint robustness, e.g., the fingerprint cannot be compromised even if the attacker changes 45% of the entries in its received fingerprinted copy and colluders will be detected with high probability. Additionally, Gen-Scope outperforms the considered baseline methods. Under the same privacy and copyright guarantees, the accuracy of the fingerprinted genomic database obtained by Gen-Scope is around 10% higher than that achieved by the baseline, and in terms of preservations of GWAS statistics, the consistency of variant-phenotype associations can be about 20% higher. Notably, we also empirically show that Gen-Scope can identify at least one of the colluders even if malicious receipts collude after independent correlation attacks.more » « less
- 
            Abstract MotivationDatabase fingerprinting has been widely used to discourage unauthorized redistribution of data by providing means to identify the source of data leakages. However, there is no fingerprinting scheme aiming at achieving liability guarantees when sharing genomic databases. Thus, we are motivated to fill in this gap by devising a vanilla fingerprinting scheme specifically for genomic databases. Moreover, since malicious genomic database recipients may compromise the embedded fingerprint (distort the steganographic marks, i.e. the embedded fingerprint bit-string) by launching effective correlation attacks, which leverage the intrinsic correlations among genomic data (e.g. Mendel’s law and linkage disequilibrium), we also augment the vanilla scheme by developing mitigation techniques to achieve robust fingerprinting of genomic databases against correlation attacks. ResultsVia experiments using a real-world genomic database, we first show that correlation attacks against fingerprinting schemes for genomic databases are very powerful. In particular, the correlation attacks can distort more than half of the fingerprint bits by causing a small utility loss (e.g. database accuracy and consistency of SNP–phenotype associations measured via P-values). Next, we experimentally show that the correlation attacks can be effectively mitigated by our proposed mitigation techniques. We validate that the attacker can hardly compromise a large portion of the fingerprint bits even if it pays a higher cost in terms of degradation of the database utility. For example, with around 24% loss in accuracy and 20% loss in the consistency of SNP–phenotype associations, the attacker can only distort about 30% fingerprint bits, which is insufficient for it to avoid being accused. We also show that the proposed mitigation techniques also preserve the utility of the shared genomic databases, e.g. the mitigation techniques only lead to around 3% loss in accuracy. Availability and implementationhttps://github.com/xiutianxi/robust-genomic-fp-github.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available